

C1 B3 56 71 AF 12 41 4F

: 6ATA6966 6966A7A8: 4F 6A C1 F6 FA 12 34 21

:687A9999 8999A789:

:687A9999 8986A7B9:

Digital IT going green!

ADRIEN NORTAIN CTO ZENIKA

TIMOTHÉE DUFRESNE Deputy Managing Director ZENIKA

4F 6A C1 F8 F

AXEL DE ROBILLARD Cofounder and Managing Director Plurium Technologies

Some context

© ZENIKA All rights reserved - Proprietary & confidential

Context - Climate Crisis.

Global energy-related CO2 emissions and annual change, 1900-2020

International Energy Agency

Context - Carbon footprint.

Distance

Your Emissions

A⊇ 21465 km

3.22 tonnes of CO2 - per person

3.22 tonnes of CO2 equals about

4594 laundry washes

1576 showers of 10 minutes

1675 days watching TV

Manufacturing 130 jeans

Manufacturing 10 laptops

Manufacturing 40 smartphones

Context

Context - Natural resources depletion.

Durée de vie des réserves rentables (en années d'exploitation)

- En cas de boom (demande accrue de 10 % pendant dix ans)
- Au rythme actuel de production

La guerre des métaux rares, Guillaume Pitron France Stratégie - La consommation de métaux du numérique « L'épuisement des métaux : faut-il s'inquiéter ? » (ADEME)

Context - Resources Rarity: Copper.

During the 30's, we needed to mine and process **55**t of mineral resources to produce 1t of copper.

We need **125** today.

e-manufacturing has economical, social and geopolitical impacts.

Context - The Rebound Effect.

- Traffic keeps increasing, so does data transfer
- User devices manufacturing is likely to increase a lot:
 - with IoT trends
 - with mobile devices FOMO marketing
- People habits tend to push the usage boundaries

Sustainable Development.

3 Ps

- to meet the present needs
- to secure the future needs

PLANET

Preserve the ecosystem, biodiversity, fauna and flora

PEOPLE

Address the people's needs, safety and diversity

PROFIT

Design sustainable production and consumption patterns

Sustainable Development.

Definitions.

GreenIT

Continuous improvement approach

Control the environmental, social and economic footprint of IT

IT for Green / Green IT 2.0

Use IT solutions to reduce the environmental impact of other industries

Sustainable Digital

Digital sustainability is the means by which digitalisation, as a key part of the fourth industrial revolution, can deliver on the global sustainability goals

Eco-Design

Product engineering following the principles of sustainable development

Digital Sobriety

Mindful and responsible usage of IT (eg. low tech)

Green IT 1.5

Target to **reduce** the impact of the company's organisation (eg. transport, infrastucture)

Life-cycle Assessment (LCA).

Normalised methodology to assess environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service (ISO 14040 et 14044)

Pentium 4 - LCA.

Fig. 2: Environmental impact assessment result for a personal computer

ADP: Abiotic Depletion Potential – non-renewable resources

Acid: Acidification (water, soil)

GWP: Global Warming Potential

ODP: Ozone Depletion Potential

Eut: Eutrophisation

POPCP: Photochemical Ozone Creation Potential

HT: Human Toxicity

ET: Ecosystem Toxicity

Digital Impact?

Digital Impact - Breakdown.

%	Energy	°€) GHG	Water	Elec.	ADP
User equipment	60%	63%	83%	44%	75%
Network	23%	22%	9%	32%	16%
Data centres	17%	15 %	7%	24%	8%

Breakdown of impact of the digital world in 2019

© ZENIKA All rights reserved - Proprietary & confidential

Obsolescence.

MATERIAL

New device not always compatible with old techno

Obsolescence

Device lifespan reduce a lot

SOFTWARE

Le Low-tech and retro compatibility most of the time put a side

Logiciel obesity are the new standard

MARKETING

Follow trend

Add functionalities and products

"The priority is to reduce our power consumption."

"You cannot measure the impact of a software. It's intangible."

We measure it on the underlying hardware.

"Data centers have the biggest environmental footprint."

"Green IT is just a defensive approach."

Eco-design

Eco-designing - Green IT 2.0.

Positive impact on industry sustainability

A well-designed IT product (software + hardware) can **optimize**:

- Energy consumption & Equipment durability
- Cost & Performance (soft + equipment)
- Branding (with limited impact HBR 2019: 66% willing, 26% acting)

It can improve social inclusion by focusing on accessibility and availability of services for:

- Persons with handicaps
- Persons without proper training (digital illiteracy)
- Populations with limited access to internet

Option 1.

LCA-based approach

Eco-design

Eco-Design - Analysis first.

For a simplified assessment:

- GWP (Global Warming Potential): mainly greenhouse gases (GHG).
- ADP (Abiotic Depletion Potential): cannot be replenished on a human time scale
- PED (Primary Energy Depletion): oil, coal, uranium, etc...
- WD (Water Depletion): blue or green water consumption

(Power consumption is not a relevant indicator here)

State of the Art.

- 01. Identify the audited elements (CIO, data center, software business unit...)
- O2. Carry out an LCA compare with existing profiles Identify areas of progress and sources of impact
- 03. Define an action plan aligned with business objectives
- O4. Support the transformation initiated by the action plan Involve stakeholders (e.g. employees, developers and business...)
- O5. Define KPIs monitored by a Steering Team
 Keep the progress always visible to decision-makers

Analytics complexity - Pitfalls.

RAW DATA

Maintenance is **expensive** Consolidation is **complex**.

CALCULATION

The **impact** must be calculated for each audited element.

COMPARISON

The comparison is interesting only if the results can be compared with similar "profiles".

Option 2. Craft approach

Eco-Design - Crafting first.

Set impactful **Objectives**

=co-design

- DIVIDE BY ?? the number of required servers over the next 5 years
- **DIVIDE BY ??%** the amount of transmitted data over the next 5 years
- AUGMENT BY ??% the lifespan of user equipments over the next 5 years

Build your own Referential of shared Green practices

- Using ?? in that context reduces CPU/RAM usage by ?? contributing to ??
- **Designing ??** reduces device usage by ?? contributing to ??
- Optimizing ?? reduces network usage by ?? contributing to ??

Eco-Design - Foundations.

- Infrastructure Architecture considerations (softwares are not tangible)
- Software Craftsmanship best practices application
- Low-tech as a default choice high-tech only when necessary
- Accessible UI/UX design, architectural decisions and tooling choices
- New ROI for each phase of a Software Development Life Cycle (SDLC)
 - Recycle reuse as is, reuse partly or transform
 - Optimize design for efficiency
 - Innovate think out of the digital box

Eco-desig

Eco-Design - Craftsmanship.

Focus areas

Eco-design can be considered during each product lifecycle phase:

- Requirements gathering
- UI / UX design
- Architecture decisions
- Technology choices
- Development
- Build and integration
- Tests
- Usage in production
- Monitoring

KAIZEN

Most impactful decisions are taken during the inception phase.

Option 3. Trial approach

Eco-design

**

Eco-Design - Trial first.

Start from existing referentials:

- Numérique Responsable 65 key best practices
- GreenIT.fr 115 best practices for the web
- Opquast (Open Quality Standards) best practices

Apply and log outcomes:

- Using ?? in our context produced a positive effect
- Using ?? in our context did not change anything
- Using ?? in our context was not possible

Downside of external referentials.

- Each IT context has their own set of specificities / priorities
 - applying recipes will only get you so far
- Most referentials address web applications or general IT assets administration, with a strong focus on network and client devices usage
 - data lakes, service meshes, ML, distributed computing... are topics that are less covered

3 options to get started.

Eco-design

Some references.

Insights and ideas

- The Shift Project: https://theshiftproject.org/en/home/
- Greenspector blog: https://greenspector.com/en/blog-2/
- GreenIT.fr (mostly in French): https://www.greenit.fr/
- Study: The environmental footprint of the digital world:
 https://www.greenit.fr/wp-content/uploads/2019/11/GREENIT_EENM_etude_EN_accessible.pdf
- Cloud Providers comparisons: https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-hyperscale-data-centers/

Referentials:

- o https://institutnr.org/wp-content/uploads/2020/06/2020-v3-65-bonnes-pratiques-greenit.pdf (FR)
- o https://collectif.greenit.fr/ecoconception-web/2019-05-Ref-eco-web-checklist.v3.EN.pdf (EN)
- https://res.cloudinary.com/opquast/image/upload/checklists/OPQUAST-GREENIT-BEST-PRACTICES_V1_FR.pdf (FR)

Eco-design example: Banque cantonale de Fribourg.

Banque Cantonale de Fribourg (2011)

Good practices

- Production of 104 good practices for teams
- First input for the 115 best practices from GreenIT.fr

Optimisations

- CSS rather than images
- Images Compression (bmp => jpg)
- Animations removal
 - Snowflakes were using 80% of the CPU!

Indicators	Before	After	Reduction ratio
Page loading time	24 sec	3 sec	8
# of HTTP Requests	38 117	23	6
Page size	5,8 Mo	0,3 Mo	19

